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ABSTRACT

For videos transmitted in an error-prone network, it is nec-
essary to protect the source bitstream. Based on our packet
loss visibility model, we minimize the end-to-end video qual-
ity degradation when transmitted in an AWGN channel using
Rate-Compatible Punctured Convolutional codes for a given
channel rate budget. We transform the original problem into a
binary-decision problem, then we solve this integer program
by the Branch and Bound method. Experimental results show
that our visibility-based unequal error protection can improve
the received video quality compared to equal error protection.

Index Terms— Unequal error protection, packet loss
visibility model, perceptual quality, AWGN channel, RCPC
codes.

1. INTRODUCTION

For predictively compressed video, losses of different pack-
ets induce different levels of distortion. Thus, it is reasonable
to have unequal levels of error protection for video packets
when transmitted in a lossy communication channel. In [1],
channel protection bits are assigned unequally among frames
in a GOP using the Genetic Algorithm. FMO (Flexible Mac-
roblock Ordering) in H.264 is employed in [2] to group mac-
roblocks of similar estimated distortion in a frame into a slice,
with different levels of channel protection over slices. This
method is extended in [3] with Converged Motion Estimation,
which performs motion estimation for the current frame us-
ing mostly the highly-protected MBs in the previous frame as
reference. In [4], frames closer to the end of a GOP have less
error protection. Intra-updating is used in [5] to aid forward
error coding to handle bursty packet losses in a 3G wireless
environment. Unequal error protection for joint source and
channel coding is considered in [6] using a source and channel
distortion function to find the best source and channel rate al-
location, where the channel codes used are Rate-Compatible
Punctured Convolutional (RCPC) codes. Traditionally, video
quality degradation is measured with MSE (mean-squared er-
ror). However, MSE is poorly correlated with human percep-
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tion [7, 8]. Therefore, to improve the performance of channel
rate allocation in terms of human visual perception, a met-
ric developed/verified by subjective experiments, instead of
MSE, should be used to evaluate quality.

In our past work, we built a Generalized Linear Model
from subjective experiments to predict the visibility when a
certain packet is lost, based on information extracted from
the video encoding process. Packet loss visibility models for
MPEG-2 [9] and for H.264 [10] were built from various sub-
jective experiments individually. In [11], we built a more gen-
eral model analyzing the data from subjective experiments
with different codecs, encoding parameters (GOP structure,
encoding rate etc.) and decoder error concealment strategies.
Also, we included scene-related and reference-frame-related
factors, shown to be significant to the visibility. We improved
this model in [12], and showed its usefulness for packet pri-
oritization.

In this paper, we propose an unequal error protection
(UEP) scheme based on the visibility of each packet to mini-
mize the visual quality degradation when transmitted over an
AWGN channel, given a channel rate budget. We use RCPC
codes to flexibly change code rates across packets. Integer
programming is used to solve this optimization problem. We
compare our method with equal error protection (EEP) us-
ing Video Quality Metric (VQM) [13, 14], a full reference
(FR) metric developed by the National Telecommunication
and Information Administration, shown to be well correlated
with human perception compared to other FR video quality
metrics [15].

The organization of this paper is as follows. In Section 2,
we briefly describe the factors of our visibility model. Sec-
tion 3 formulates the RCPC rate allocation problem as an in-
teger programming problem. In Section 4, the branch and
bound method is introduced to solve the optimization prob-
lem. Experimental results are shown in section 5. We discuss
possible further improvements to this work and conclude in
section 6.

2. PACKET LOSS VISIBILITY MODEL

The definition of packet loss visibility is the probability that
the end user will observe the packet loss artifact if the packet
is lost. In this paper, we use the packet loss visibility model



from [12]. This model was built from three subjective exper-
iments with various codecs, encoding rates, GOP structures
and error concealment methods. Here we focus on the de-
scription of the factors used in the model; this description is
taken from [12].

We define the original video frame at time t as f(t),
the compressed video frame as f̂(t), and the decoded video
frame as f̃(t) (with possible packet losses). The error is
e(t) = f̂(t) − f̃(t). The factors were classified by acces-
sibility of the original video as a reference when measured.
The RR (Reduced-Reference) measurements for a packet
can be obtained when a video encoder or video server reli-
ably provides per-MB information based on e(t), f̂(t) and
f̃(t), assuming knowledge of the decoder concealment strat-
egy. It was found that IMSE, ISSIM (the average MSE and
SSIM [16] among all MBs in an initial packet loss) and Max-
IMSE (the maximum per-MB MSE over all MBs in the initial
packet loss) are significant to the packet loss visibility. To
measure the motion information (x,y) per MB that is indepen-
dent of any codec, a forward motion estimation using 16x16
motion blocks from the uncompressed signal f(t) was used.
(MOTX,MOTY) is the average motion vector, and ResidEng
is the average residual energy after motion compensation,
over MBs in a packet. The boolean variable HighMOT is
TRUE if MOTM =

√
MOTX2 + MOTY 2 >

√
2.

Reference-Scene-related factors are shown to be impor-
tant by exploratory data analysis (EDA) in [11]. A method
for detection of quick scene cuts from f̂(t) was presented
in [17]. Each packet loss was labeled by the distance in
time between the first frame affected by the packet loss and
the nearest scene cut, either before or after. This is Dist-
FromSceneCut, and is positive if the packet loss happens
after the closest scene cut in display order, and negative oth-
erwise. DistToRef per MB describes the distance between
the current frame (with the packet loss) and the reference
frame used for concealment. This variable is positive if
the frame with the packet loss uses a previous (in display
order) frame as reference, and negative otherwise. FarCon-
ceal is TRUE if MaxDistToRef (maximum of |DistToRef|
in a slice) ≥ 3. In this inequality, MaxDistToRef has units
of frames. The Boolean variable, OtherSceneConceal, is
TRUE if |DistFromSceneCut| < |MaxDistToRef|, where
the compared variables must be of the same sign (same di-
rection). In this inequality, the compared variables have
units of seconds. If the compared variables have different
signs, OtherSceneConceal is FALSE. OtherSceneConceal
describes whether the packet loss will be concealed by an
out-of-scene reference frame which will increase the visi-
bility of packet loss. To account for the depressed visibility
immediately before a scene cut, BeforeSceneCut is TRUE
if −0.4sec < DistFromSceneCut < 0sec. Scenes are
classified based on four camera-motion types: still, panning,
zooming, or complex camera motions. Since significantly
fewer viewers see packet loss in still scenes than in panning

Factors
Coeff. for

Final Model
Intercept 4.18061

log(1− ISSIM + 10−7) 0.22871
SXTNT2 -0.41208

SXTNTFrame -1.47672
Error1Frame -0.33009

log(MaxIMSE + 10−7) 0.27578
log(ResidEng + 10−7) -0.61219

HighMOT 0.18290
NotStill 0.73364

BeforeSceneCut -1.14434
OtherSceneConceal 2.08966
log(IMSE + 10−7) 0.30492

log(IMSE + 10−7) : FarConceal 0.25720

Table 1. Factors of the final model. Note that the colon (:)
means “interact with”

or zooming scenes [11], the Boolean variable NotStill is
TRUE if motion type is not still.

NR (No-Reference) factors can be measured from the
lossy pixels only (NR-P), lossy bitstream only (NR-B), or
both bitstream and pixels (NR-BP). Factors found by these
methods describe exactly the spatial extent, pattern, location,
and temporal duration of the loss. Variants of these factors
that are significant to the visibility were defined as follows:
SXTNT2 is TRUE when two consecutive slices are lost, and
SXTNTFrame means all slices in the frame are lost. Er-
ror1Frame is TRUE if the packet loss lasts only one frame.
Here we do not consider the number of packets referring to
the lost packet, or the number of frames for which the error
propagates. As in our past work, we adopt the NR-B mea-
surements to directly obtain the above factors. The factors
and coefficients of our final model are summarized in Table 1,
taken from [12].

3. RCPC RATE ALLOCATION FOR EXPECTED
PACKET LOSS VISIBILITY

Using the model described in Section 2, we can compute for
each packet the loss visibility. The visibility scores can be
regarded as the visual importance of each packet. If we assign
a lower channel code rate to the packet, the probability that
the end users observe the packet loss from this packet will
be lower. However, the lower code rate requires more FEC
(Forward Error Correction) bits. Thus it is important to find
out the best code rates to be allocated to each packet given a
total bandwidth and other characteristics of the packets.

Assume we have N packets, with size Si and packet loss
visibility Vi, i = 1, 2, ..., N . We seek the optimal RCPC rate



selection ri for the ith packet from the RCPC candidate set
{R1, R2, ..., RK}, so as to minimize the end-to-end expected
packet loss visibility, while the outgoing total rate budget is
constrained to be B. The problem can be formulated as:

minri

1
N

∑N
i=1 Vi × PacketErrorRate(SNR,Si, ri)

s.t.
∑N

i=1 Si × 1
ri
≤ B

ri ∈ {R1, R2, ..., RK}
i = 1, 2, ..., N (1)

Here we define a packet to be in error (undecodable by the
source decoder) when any of the bits in the packet is incorrect.
Therefore,

PacketErrorRate(SNR, Si, ri)
= 1− (1−BER(SNR, ri))Si (2)

Also, from [18] and the simulation section, the logarithm of
BER (bit error rate after channel decoding) is linearly related
to the inverse of the RCPC rate for a given SNR in an AWGN
channel. Thus we have

BER = 10a(SNR) 1
r +b(SNR)

r ∈ {R1, R2, ..., RK} (3)

where the regression coefficients a and b are a function of
SNR. From here we fix SNR for discussion simplicity. Substi-
tuting the expression of packet error rate and BER into prob-
lem (1), we have the following:

minri

1
N

∑N
i=1 Vi × {1− (1− 10a 1

ri
+b)Si}

s.t.
∑N

i=1 Si × 1
ri
≤ B

ri ∈ {R1, R2, ..., RK}
i = 1, 2, ..., N (4)

This problem can be recognized as a nonlinear integer pro-
gramming problem, and can be solved by a well-developed
method called branch-and-bound (BnB). To use BnB to solve
an integer optimization problem, it is preferable to trans-
form the original discrete optimization variables into binary
boolean variables [19]. For our problem, the optimization
variables and the set ri ∈ {R1, R2, ..., RK} are transformed
into xij ∈ {0, 1} defined as

xij =
{

1 if packet i uses rate j
0 otherwise

Since one packet can only use one rate, we have the following
linear equality constraint:

K∑

j=1

xij = 1, ∀i = 1, 2, ..., N

Therefore, our problem in (4) can be written as:

minxij

1
N

∑N
i=1

∑K
j=1 xij × Vi × {1− (1− 10a 1

Rj
+b)Si}

s.t.
∑N

i=1

∑K
j=1 xij × Si × 1

Rj
≤ B

∑K
j=1 xij = 1,∀i = 1, 2, ..., N

xij ∈ {0, 1} (5)
i = 1, 2, ..., N, j = 1, 2, ..., K

Now we can use BnB, which is described later, to solve the
rate allocation problem.

4. BRANCH AND BOUND METHOD

The Branch-and-Bound (BnB) method implicitly enumerates
all the possible combinations of the optimization variables,
and in principle produces an exactly optimal solution [19].
BnB partitions the original problem into smaller subsets by
tree-growing, and eliminates further consideration of the fea-
sible solutions that can not be better than the current one. BnB
solves the integer programming problem as follows :

1. The original problem is solved with the integer con-
straint being relaxed, i.e., to allow 0 ≤ xij ≤ 1. The
lower bound (LOWER) of the optimized value to the
original problem is the optimized value of the relaxed
problem since it has a larger feasible set. The upper
bound (UPPER) of the optimized value to the original
problem can be obtained by substituting the rounded
solutions (to zero or one so that they are feasible) into
the problem. This is an upper bound of the optimal
value to the original problem since it is the best feasi-
ble value we can find in this stage. The optimal value
to the original problem must be less than or equal to
UPPER, and greater than or equal to LOWER.

2. For non-zero-or-one entries (which are infeasible) in
the solution from the previous stage, the algorithm
grows binary subtrees that fix one entry to zero or one,
then solves the problem while relaxing other entries.
The optimized value is the lower bound to this sub-
problem. If this lower bound is greater than UPPER,
we prune this branch, since the solutions to any feasible
combination of the trees growing from this point are
not going to be better (less) than UPPER we currently
have. Otherwise, we keep the node for further grow-
ing. The upper bound of this subproblem can again
be yielded by substituting the rounded solution to the
problem. If the upper bound to this subproblem is less
than UPPER, we update the UPPER, and mark this
rounded solution (feasible) as the best solution so far.

3. Step 2 will be repeated until there is no node to be
grown.



Details of the Branch-and-bound algorithm can be found in
[19].

5. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of our end-
to-end visibility minimization method compared to EEP. The
rate allocation problem is preferably performed across all the
packets in a GOP using the rate budget available in a GOP,
so that the number of variables and budget are larger to im-
prove performance. However, the computational time of BnB
grows nonlinearly with the number of variables (N ). There-
fore we should find a strategy to balance between results and
computational efficiency.

The video sequence used in our experiment is encoded
by H.264/AVC JM Version 12.1 in SIF resolution (352×240)
with GOP structure IPPP, frame rate 30 fps, and encoding rate
600 kbps. We define a packet (a NAL unit) as a horizontal row
of macroblocks. Therefore, there are 15 packets in a frame. If
the optimization is done over one frame, the algorithm is not
able to exploit the relative differences in visibility that occur
in different frames and redistribute FEC bits efficiently. For
example, if we optimize the channel rate allocation over one I
frame where the loss visibility of most packets would be high,
we are not making use of the less necessary FEC bits used in
B frames where there are more packets with lower visibility.
However, if the optimization is to be done over a GOP (30
frames), there will be N = 450 variables, which is too large
for the BnB method.

In this experiment, we consider all packets in a GOP, but
we partition the packets into groups. We first sort the pack-
ets by their packet loss visibility in ascending order. Each
group of packets (N = 15) to be optimized by BnB includes
13 packets of low visibility from the head of the sorted pack-
ets, and 2 packets of high visibility from the tail of the sorted
packets. For example, the first group of packets includes
packet number [1:13, 449:450] from the sorted packets, and
second [14:26, 447:448], etc, where the Matlab notation is
used. In this way, we attempt to distribute FEC bits from more
packets of low visibility, to few packets of high visibility.

The convolutional coder to produce the mother code of the
RCPC code has rate 1

L where L = 4, with memory M = 4.
The puncturing period of the RCPC code is P = 8. The chan-
nel we simulate for the wireless communication is AWGN.
As mentioned previously, the logarithm of the bit error rate
at a given SNR can be linearly related to the inverse of the
RCPC rates, as shown in Fig 1. The coefficients of models
for different SNRs are shown in Table 2. In this simulation,
the RCPC rate used by EEP is 8

14 , and the RCPC rates from
which our method can select are { 8

12 , 8
14 , 8

16 , 8
18}. The bud-

get for the optimization problem will be the number of bits
used by the EEP in the optimization group. The simulated
AWGN channel SNR ranges from −2 to 2 dB, correspond-
ing to the channel bit error rate from about 10−1 to 10−4

when the RCPC rate of EEP ( 8
14 ) is considered. Instead of

using mean square error, the resulting source-decoded videos
are evaluated by a full-reference metric VQM (Video Qual-
ity Metric) [13] which is much closer to human perception.
VQM ranges from 0 (excellent quality) to 1 (poor quality).
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Fig. 1. Linearity of the logarithm of BER to the inverse of
RCPC rates for different SNRs of an AWGN channel.
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Fig. 2. The average VQM comparison between EEP and UEP
over 100 realizations of each AWGN channel.

Figure 2 shows the VQM comparison result between EEP
and our proposed UEP. Each data point is obtained by averag-
ing the performance of the corresponding algorithm from 100
realizations of the AWGN channel. We observe that our pro-
posed UEP method consistently performs better (lower VQM
scores) than EEP for all SNRs. The largest VQM difference



SNR -2dB -1dB 0dB 1dB 2dB
a(SNR) -1.59 -2.15 -2.59 -3.11 -3.43
b(SNR) 1.82 2.35 2.46 2.5 2.01

Table 2. The coefficients of the linear model for BER in
Equation (3) for different AWGN SNR.
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Fig. 3. The boxplot VQM comparison between EEP and
UEP for 100 realizations of each AWGN channel. The x-axis
shows each SNR twice, each for a specified method.

between the EEP and the proposed UEP is about 0.1, which is
considered to be a significant difference in VQM score (see,
e.g., [20]).

Besides the mean comparison, we can have more insight
to the performance of the two methods by investigating the
distributions of their 100 performance realizations. Figure 3
demonstrates the boxplot distributions for each particular
method versus SNR. Each box indicates 1st quartile, median
and 3rd quartile, and the cross symbols stand for outliers to
the distribution. We notice that most of the time the distri-
bution of VQMs produced by EEP is wider than the ones by
UEP. In particular when SNR=0dB, the mean of the VQMs
for EEP is 0.5, but the VQM in this distribution can be as bad
as 0.9, indicating that the performance of EEP is less stable
than UEP in most of the cases.

6. DISCUSSION AND CONCLUSIONS

The results by our algorithm presented in previous section are
promising, but would improve if we use our algorithm for all
packets in a GOP without further partition. However, due to
the complexity of the branch and bound method, we choose

to optimize over 15 packets at a time; this limits the ability
of the algorithm to regulate a larger budget for a larger num-
ber of packets. One solution to the complexity problem is to
accelerate the branch and bound method by adding more con-
straints in the optimization problem [19]; this will reduce the
variable search range. Of course, the additional constraints
should make sense for the desired solution. For example, if
the packet sizes are all the same, we can set a linear con-
straint stating that if packet A has higher loss visibility than
packet B, the channel rate assigned to packet A should never
be higher than the one to packet B. However this is not a valid
constraint for our case since the packets in our problem do
not have the same size; larger size can lead to higher packet
error rate. Therefore one of our future work is to increase the
number optimization variables and find additional valid con-
straints to reduce the search time of the BnB algorithm.

Compared to EEP where there is only one channel rate,
we need to signal which channel code rate is used for each
packet; this introduces an overhead to each packet. In our
simulation, we have 4 RCPC rates for each packet to select
from. Therefore, for each packet, we need an additional 2
bits to tell the channel decoder which RCPC rate is used for
this packet. However, this 2-bit overhead is negligible com-
pared to the overall bits for each packet. In our simulation,
the mean packet size is 2294 bits (including both source and
channel bits). Compared to this, we ignore the 2-bit signalling
overhead.

In conclusion, we use the branch and bound method to
solve the channel rate RCPC allocation problem to reduce the
end-to-end packet loss visibility over an AWGN channel. The
result shows that our method consistently achieves better end-
to-end video quality in different channel SNRs than Equal Er-
ror Protection.
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